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On viscous Burgers-like equations
with linearly growing initial data

Yoshikazu Giga And Kazuyuki Yamada

1. Introduction

We consider a viscous Burgers-like equation of the form

(E)
{

∂tu−∆u+ divG(u) = 0 in Rn × (0, T ),
u|t=0 = u0 in Rn,

where ∂t = ∂/∂t. It is well-known that if u0 is bounded, (E) admits a unique global
solution (cf. [8]). In this paper we consider the case that u0 is not bounded at
the space infinity. This paper specifies the growth of nonlinear term as G(r) ∼ r2

for large r. A typical example is the viscous Burgers equation. Our goal is to
solve the initial value problem when the initial data may grow linearly at the space
infinity. We shall prove that the problem admits a unique local regular solution.
The global existence is not expected in general even for n = 1 since u(x, t) =
−x/(1 − t) is a solution of the viscous Burgers equation: ∂tu − ∆u + u∂xu = 0
with u0(x) = −x, where ∂x = ∂/∂x. We also obtain an optimal estimate of the
existence time. In fact, the existence time interval (0, T ) is estimated from below
by a constant multiple over a Lipschtz bound for initial data, T ≥ C2‖∇u0‖∞;
here the constant C2 is estimated by the structure of G, and ‖∇u0‖∞ is defined
by ‖∇u0‖∞ =

(∑n
i=1 ‖∂iu0‖2

∞
)1/2, where ∂iu0 = ∂u0/∂xi.

To state our main result precisely we assume the following bounds for G =
(G1, · · · , Gn) ∈ C2+α(R;Rn) with some α ∈ (0, 1):

(C)

C1 := sup
i

sup
r∈R

|G′i(r)|
〈r〉

<∞,

C2 :=

(
n∑

i=1

(
sup
r∈R

|G′′i (r)|
)2
)1/2

<∞,

C3 := sup
i

sup
r1,r2∈R

|G′′i (r1)−G′′i (r2)|
|r1 − r2|α

<∞.

Here we set 〈x〉 =
√

1 + |x|2 for x ∈ Rn and G′i is denotes the derivative of Gi.
A typical example satisfying this assumption (C) is Gi(r) = r2 (1 ≤ i ≤ n). We
prepare a few function spaces allowing growth at space infinity. Let Lp

m be of the
form

Lp
m = Lp

m(Rn) =

{
f ∈ Lp

loc(R
n)

∣∣∣∣∣ ‖f‖p,m :=
∥∥∥∥ f(x)
〈x〉m

∥∥∥∥
p

<∞)

}
.
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Of course, Lp
0 = Lp by definition so that ‖ · ‖p,0 = ‖ · ‖p. Let XB be of the form

XB =
{
f ∈ C1(Rn) | ‖f‖XB

:= ‖f‖∞,1 + ‖∇f‖∞ <∞
}
.

Definition. By a classical solution u of (E) we mean that u ∈ C(Rn×[0, T ))
is C2 in space and C1 in time, and it solves (E).

Theorem (Existence and uniqueness of a solution of a viscous Burgers like
equation). Assume that G ∈ C2+α(R;Rn) satisfies bounds (C). Assume that

u0 ∈ XB . Then there exist T ≥ T0 :=
1

C2‖∇u0‖∞
and u ∈ L∞loc([0, T );L∞1 (Rn)) ∩

C(Rn × [0, T )) that satisfies (E) in Rn × (0, T ) with u|t=0 = u0. The existence
time estimate T ≥ T0 is optimal in the sense that a classical solution may not exist
in [0, T ) for T > T0.

Optimality is easily observed by the next example.

Example. We set ξ, η ∈ Rn and we take

G(r) =
ξ

2
r2,

so that (E) becomes

(E)′
{
∂tu−∆u+ (∇u • ξ)u = 0,
u|t=0 = u0,

where ”•” is the inner product. Then the function

u(x, t) =
(ξ • η)(η • x)
1 + (ξ • η)t

solves (E)′ with the initial condition u0(x) = η •x. If ξ • η < 0, the solution of (E)′

blows up at t = 1/|ξ • η|. Since C2 = |ξ|, ‖∇u0‖∞ = |η|, this example shows the
estimate T ≤ T0 is optimal if ξ parallels η.

Remark. (1) It is easy to see that this existence time estimate is invariant
under a rotation of space variables x. If we do not care about rotation invariance
of results, there is a sharper estimate for T by defining T0 by

T0 =

 inf
1
p + 1

q =1

(
n∑

i=1

|C(i)
2 |p

)1/p( n∑
i=1

‖∂iu0‖q
∞

)1/q
−1

,
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where C(i)
2 = supr∈R |G′′i (r)|, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.

(2) If we consider ∂tu − ε∆u + divG(u) = 0 for ε > 0 instead of the evolution
equation (E), we still obtain the existence time estimate T ≥ T0 independent of
ε > 0. This is easily follows from our theorem by changing the variable t by s/ε or
x by y/

√
ε.

For the viscous Burgers equation:

(B) ∂tu−∆u+ u∂xu = 0,

the problem (E) is reduced to the initial value problem for the heat equation via
the Hopf-Cole transformation. Indeed, we set

v(x, t) =
∫ t

0

u(y, t)dy + f(t),

f ′(t) = ∂xu(0, t)−
u2(0, t)

2
, f(0) = 0.

We observe that v satisfies

(B)′ ∂tv −∆v +
1
2
(∂xv)2 = 0.

We set w(x, t) = e
1
2 v(x,t) and observe that w satisfies the heat equation

∂tw −∆w = 0.

(The transformation form v to w is called the Hopf-Cole transformation.) Our
problem is reduced to the unique solvability of the heat equation with initial data
w ∼ eax2

for large x. The solvability and the existence time estimate is easily
proved by the explicit solution formula. The uniqueness part is more subtle but it
is widely studied for example in [10]. For the viscous Burgers equation our result
easily follows from results for the heat equation [9], [10] without a Lipschitz bound
for u0. However, if n > 1 or G is general, this argument evidently fails to apply.

A classical result of Tychonov [9] states that the Cauchy problem for the heat
equation has a unique classical solution in

E(Rn × [0, T )) ={
f ∈ C(Rn × [0, T ))| ∃a, ∃C > 0 such that |f(x, t)|e−a|x|2 ≤ C

}
.

for a continuous initial data u0(x) satisfying growth condition

|u0(x)| ≤ Cea|x|2
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for some positive constants C, a.
Moreover, D. G. Aronson [1] generalized the result of Tychonov for a parabolic

operator with variable coefficients

Lu = ∂tu−
∑
i,j

∂i{Aij(x, t)∂ju+Ai(x, t)u}

with suitable conditions for Aij and Ai for u0 satisfying∫
Rn

|u0(x)|e−a|x|2dx <∞

for some positive constant a. He proved that there is a unique solution in

E2(Rn × [0, T )) ={
f ∈ L2

loc(R
n × [0, T ))

∣∣∣∣∣
∫
Rn×(0,T )

e−a|x|2f2(x, t)dxdt <∞ for some a > 0

}
.

for Lu = 0 with u|t=0 = u0.
K. Ishige [7] proved that solvability of Cauchy problem:{

∂t(|u|β−1u) = div(|∇u|p−2∇u),
|u|β−1u(·, 0) = µ(·),

for the initial data µ growing at space infinity. There are some more results for
nonlinear equations (see e.g. [7], [3]) but these results do not include (E).

A recent paper [6] of A. Gladkov, M. Guedda and R. Kersner studied the unique
solvability of

∂v

∂t
=
∂2v

∂x2
+ λ

∣∣∣∣∂v∂x
∣∣∣∣q in R× (0, T ]

with λ > 0, q > 1, when initial data v0 is not necessary bounded. In fact, they
proved that if u0(x) ≤M0(α0 +x2)q/[2(q−1)]−γ with some positive constant M0, α,
γ. Then there exists a unique local solution on R× (0, T ] provided that T satisfies

T <
M
−(q−1)
0

λ(q − 1)

(
q − 1
q

)q

.

If γ > 0, then the solution can be extended globally in time. When q = 2 the
equation agrees with (B)′. So their result qualitatively implies the local existence
for the Burgers equation. However, in general their results do not overlap with
ours. Like their result it is possible to prove the global existence when the growth
order is less than linear. We shall discuss this topic in a forthcoming paper of the
second author.

Uniqueness of solutions without imposing growth conditions was recently stud-
ied by G. Barles, S. Biton and O. Ley [2] and K.-S Chou and Y.-C. Kwong [4].
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However, the class of quasilinear parabolic equations to which their theory applies
excludes our equation (E).

Let us give the idea of the proof. If u0 is bounded, (E) can be solved by the
following iteration:

uk+1(t) = et∆u0 −
∫ t

0

e(t−s)∆∇uk(s) •G′(uk(s))ds. (1)

But if u0 is not bounded, it is difficult to solve (E) by the iteration (1). So we use
another iteration:

uk+1(t) = et∆u0 −
∫ t

0

e(t−s)∆∇uk+1(s) •G′(uk(s))ds. (2)

To use this iteration (2) it is necessary to study the solvability of the linear equation
with growing coefficients in the transport term:

∂tv −∆v +∇v • p− vq = 0, (3)

for v ∈ L∞(0, T ;L∞), p ∈ L∞(0, T ;L∞1 ), q ∈ L∞(0, T ;L∞). Fortunately, it is not
very difficult to solve the linear equation (3) for initial data v0 ∈ BC, where BC
is the set of all bounded continuous functions and BCm is defined by

BCm =
{
f ∈ C(Rn)

∣∣∣∣ f(x)
〈x〉m

∈ BC
}
.

Estimating the heat kernel in (2), we get the estimate:

‖uk+1(t)‖∞,1 ≤ CT ‖u0‖∞,1 + CT

∫ t

0

‖∇uk+1(s)‖∞‖G′(uk(s))‖∞,1ds. (4)

Since un+1 satisfies

∂tun+1 −∆un+1 +∇un+1 •G′(un) = 0,

∂iun+1 satisfies

∂t(∂iun+1) + ∆(∂iun+1) +∇(∂iun+1) •G′(un) +∇un+1 ·G′′(un)(∂iun) = 0.

The maximum principle for (3) yields

‖v‖∞ ≤ ‖v0‖∞ +
∫ t

0

‖q(s)‖∞‖v(s)‖∞ds.

Applying the above maximum principle for v, we get

‖∇uk+1(t)‖∞ ≤ ‖∇u0‖∞ + C2

∫ t

0

‖∇uk+1(s)‖∞‖∇uk(s)‖∞ds.
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By the Gronwall inequality ‖∇uk(t)‖∞ satisfies

‖∇uk(t)‖∞ ≤ ‖∇u0‖∞
1− C2‖∇u0‖∞t

(5)

for all k.
By (4) and (5) we see that {uk} is a Cauchy sequence in L∞(0, T0 − ε;L∞1 )

for any ε ∈ (0, T ) so that u := lim
k→∞

uk is solution of (E). It is easy to prove the

uniqueness of solution of (E) by using the maximum principle for equation (3).
The key underlying estimate is an apriori estimate:

‖∇u(t)‖∞ ≤ ‖∇u0‖∞ + C2

∫ t

0

‖∇u(s)‖2
∞ds

for u of (E) which yields, by the Gronwall inequality (Lemma 3.1), a bound for
‖∇u(t)‖∞:

‖∇u(t)‖∞ ≤ ‖∇u0‖∞
1− C2‖∇u0‖∞t

.

It is natural to consider a linearly growing initial data for (E). We conclude this
introduction by giving a formal argument to show that at most linearly growing
initial data is allowed for existence of a solution. We postulate that u(x, t) = xαf(t)
is a solution of (E). By (E) u must satisfy

xαf ′(t) = α(α− 1)xα−2f(t) + αxα−1f(t)G′(xαf(t)).

We observe that the growth of the left hand side is xα. By the assumption of G
the growth of the right hand side is x2α−1. Hence α must satisfy α ≤ 2α − 1 so
that α ≤ 1.

2. Estimates for the heat semigroup in weighted space

We recall several elementary properties of the heat kernel

Gt(x) = G(x, t) =
1

√
4πt

n e
− |x|

2

4t .

The next two lemmas are well-known but we give a proof for completeness. For
a multi-index a = (a1, · · · , an) by ∂a we mean ∂a = ∂a1 · · · ∂an , ∂i = ∂/∂xi.

Lemma 2.1 (Derivatives of heat kernel). Derivatives of Gt are of the form

∂aGt(x) =

(
n∏

i=1

pai
(xi, t)

)
Gt(x)

with some polynomial of xi and t−1 of the form

pai
= pai

(xi, t) =
∑

m≤n≤ai

Cm,nx
m
i t
−n.
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Proof. It is sufficient to prove in the case of a = (a1, 0, · · · , 0).

∂1 (pa1(x1, t)Gt(x)) =
(
∂1pa1(x1, t)−

x1

2t
pa1(x1, t)

)
Gt(x).

A standard induction argument yields Lemma 2.1 (In fact, pai
(xi, t) is a constant

multiple of (4t)−ai(−1)nHai
((4t)−1/2xi), where Hai

is the Hermite polynomial de-
fined by (e−s2

)(j) = (−1)j+1Hj(s)e−s2
) . 2

Lemma 2.2 (Polynomial multiplication). For a multi-index a the identity
holds

xaGt(x) =

 n∏
i=1

∑
0≤j≤ai

qj,i(t)∂
j
i

Gt(x)

with some polynomial qj,i(t) of the form

qj,i(t) =
∑

j≤k≤ai

Ckt
k.

Proof. It is sufficient to prove in the case of a = (a1, 0, · · · , 0).By definition,

xa1+1
1 Gt(x) = x1

∑
j≤a1

qj,1(t)∂
j
1Gt(x)

= x1

∑
j≤a1

qj,1(t)pj(x1, t)Gt(x) by lemma 2.1

=
∑
j≤a1

qj,i(t)(−2t(−x1

2t
pj(x1, t)

+∂1pj(x1, t)) + 2t∂1pj(x1, t))Gt(x)
=
∑
j≤a1

qj,i(t) (−2tpj+1(x1, t) + 2t∂1pj(x1, t))Gt(x)

=
∑
j≤a1

2tqj,i(t) (−pj+1(x1, t) + ∂1pj(x1, t))Gt(x)

by the proof of lemma 2.1. This yields Lemma 2.2. 2

Lemma 2.3 (Estimate of heat kernel in weighted space). There is a
constant C = C(n) such that

‖et∆f‖∞,1 ≤ C(1 +
√
t)‖f‖∞,1

holds for all f ∈ L∞1 (Rn), t > 0.
Proof. An elementary calculation shows that

〈y〉
〈x〉

= 1 +
n∑

i=1

(yi − xi)hi,x(y),
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with hi,z(y) defined by

hi,z(y) =
(yi + zi)

〈z〉(〈y〉+ 〈z〉)
.

Clearly, we have
sup

i
sup

z
‖hi,z‖∞ = 1.

We now calculate 〈x〉−1et∆f to get

1
〈x〉

∫
Rn

Gt(x− y)f(y)dy

=
∫
Rn

〈y〉
〈x〉

Gt(x− y)
f(y)
〈y〉

dy

=
∫
Rn

(
1 +

n∑
i=1

hi,x(y)(xi − yi)

)
Gt(x− y)

f(y)
〈y〉

dy

=
∫
Rn

Gt(x− y)
f(y)
〈y〉

dy +
∫
Rn

2t
n∑

i=1

hi,x(y)∂iGt(x− y)
f(y)
〈y〉

dy.

Estimating L∞-norm we obtain

‖et∆f‖∞,1 ≤ ‖f‖∞,1 + 2tn sup
i

sup
z
‖∂iet∆(hi,z < x >−1 f)‖∞

≤ ‖f‖∞,1 + 2tn
2√
4πt

‖f‖∞,1

= ‖f‖∞,1 +
2n√
π

√
t‖f‖∞,1

≤ C(1 +
√
t)‖f‖∞,1.

Here we have used L∞−L∞ estimates: ‖et∆k‖∞ ≤ ‖k‖∞, ‖∂iet∆k‖∞ ≤ πt−1/2‖k‖∞,
with some C > 0 independent of k. 2

A similar argument yields estimates of derivatives in weighted spaces.
Corollary 2.4. There is a constant C = C(n,m, a) such that

‖∂aet∆f‖∞,m ≤ C
m∑

k=0

t
k
2−

|a|
2 ‖f‖∞,m

holds for all f ∈ L∞m and t > 0.

Lemma 2.5 ( Hölder continuity of the heat kernel in weighted space). There
is a constant C = C(n, α) such that

‖et∆f − es∆f‖∞,1 ≤ C
(
(t− s)αs−α + (t− s)t−1/2

)
‖f‖∞,1
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holds for all 0 < s ≤ t and 0 < α ≤ 1.
Proof. We set gm(x) = 〈x〉−m. In a similar way of proving Lemma 2.3 we

have, by ||et∆k − es∆k||∞, s1/2||∂iet∆k − ∂ies∆k||∞ ≤ C(t− s)αs−α||k||∞

‖et∆f − es∆f‖∞,1

≤ ‖
(
et∆ − es∆

)
(g1f)‖∞ + 2n sup

i
sup

z
‖
(
t∇et∆ − s∇es∆

)
(hi,zg1f)‖∞

≤ ‖
(
et∆ − es∆

)
(g1f)‖∞

+ 2n sup
i

sup
z

(‖(t∂iet∆ − s∂iet∆)(hi,zg1f)‖∞
+ ‖(s∂iet∆ − s∂ies∆)(hi,zg1f)‖∞)

≤ (Cα(t− s)αs−α + 2n(Cn(t− s)t−1/2 + Cαs(t− s)αs−α−1/2))‖f‖∞,1

≤ (Cα(t− s)αs−α + 2n(Cn(t− s)t−1/2 + Cα(t− s)αs−α+1/2))‖f‖∞,1

≤ C((t− s)αs−α + (t− s)t−1/2)‖f‖∞,1. 2

In a similar way of proving Lemma 2.5, we obtain a more general version.
Corollary 2.6. There is a constant C = C(n,m, a, α) such that

‖∂aet∆f − ∂aes∆f‖∞,m

≤ C

(
(t− s)αs−α

m∑
k=0

sk/2 + (t− s)t−1/2
m−1∑
k=0

tk/2

)
s−|a|/2‖f‖∞,m.

holds for all 0 < s ≤ t and 0 < α ≤ 1.

Remark 2.7. In this paper we use these estimates in finite time interval
(0, T ) so we give the following version of the estimates in Corollary 2.4 and Corollary
2.6.

‖∂aet∆f‖∞,m ≤ CT t
−|a|/2‖f‖∞,m (0 < ∀t ≤ T ),

‖∂a(et∆ − es∆)f‖∞,m ≤ CT ((t− s)αs−α + (t− s)t−1/2)s−|a|/2‖f‖∞,m

(0 < ∀s ≤ ∀t ≤ T ).

Here CT is a constant independent of f and t, s but may depend on T .

3. Gronwall type inequalities

In this section we recall several versions of Gronwall type inequalities.
Lemma 3.1. Assume that f ∈ L∞(0, T ), g ∈ L1(0, T ), satisfies f, g ≥ 0

a.e. t. Assume that h is a positive nondecreasing function on (0,∞). Assume that
c is a positive constant. Let H be a primitive function of 1/h.
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If f satisfies

f(t) ≤ c+
∫ t

0

g(s)h(f(s))ds for a.e.t ∈ (0, T ),

then

H(f(t))−H(c) ≤
∫ t

0

g(s)ds for a.e.t ∈ (0, T ).

¿From now on we suppress the word ”a.e.”.
Proof. We set

F (t) := c+
∫ t

0

g(s)h(f(s))ds.

Then
d

dt
F (t) = g(t)h(f(t)) ≤ g(t)h(F (t)).

Integrating this differential inequality, we get

H(F (t))−H(F (0)) ≤
∫ t

0

g(s)ds.

Since h is a positive, the function H is a monotone increasing function. Thus we
conclude that

H(f(t))−H(c) ≤
∫ t

0

g(s)ds. 2

Remark 3.2. (1) If H has the inverse, Lemma 3.1 implies

f(t) ≤ H−1

(
H(c) +

∫ t

0

g(s)ds
)
.

In this paper we apply Lemma 3.1 when h(r) = r2 and H(r) = r. If h(r) = r2,
Lemma 3.1 implies that f satisfies

f(t) ≤ c

1− c
∫ t

0
g(s)ds

,

when c is positive. Of course, we may send c to zero in this case. If h(r) = r,
Lemma 3.1 implies that

f(t) ≤ ce
∫ t
0 g(s)ds.

(2) In Lemma 3.1 we assume f ≥ 0, h ≥ 0, c > 0. However, if h satisfies
h(r) = r, it is not necessary to assume that f ≥ 0 and that c is a positive constant.
Moreover we may take c as a function.
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We shall state it for convenience. Assume that k ∈ L∞(0, T ), and g ∈ L1(0, T )
and g ≥ 0. Assume that f ∈ L∞(0, T ) satisfies

f(t) ≤ k(t) +
∫ t

0

g(s)f(s)ds, t ∈ (0, T ).

Then f satisfies

f(t) ≤ k(t) +
∫ t

0

g(s)k(s)e
∫ t

s
g(τ)dτds, t ∈ (0, T ).

This inequality is known as the famous Gronwall inequality and it is included in
many standard text books.

We shall give an application of the Gronwall inequality.
Lemma 3.3. Assume that h ∈ L∞(0, T ) and that F : [0, T )× [0,∞) → R

is locally bounded and r 7→ F (t, r) is a nonnegative nondecreasing function for all
t ∈ [0, T ). Assume that k ∈ L∞(0, T ) (k ≥ 0) satisfies

k(t) = h(t) +
∫ t

0

k(s)F (s, k(s))ds, t ∈ (0, T ).

Assume that f, g ∈ L∞(0, T ) satisfy f, g ≥ 0 and that

f(t) ≤ h(t) +
∫ t

0

f(s)F (s, g(s))ds, t ∈ (0, T ).

If g satisfies

g(t) ≤ k(t),

then f satisfies

f(t) ≤ k(t).

Proof. By assumption

f(t)− k(t) ≤ h(t) +
∫ t

0

f(s)F (s, g(s))ds− h(t)−
∫ t

0

k(s)F (s, k(s))ds

≤
∫ t

0

(f(s)− k(s))F (s, k(s))ds.

By Remark 3.2 (2) we have
f(t)− k(t) ≤ 0.2
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4. Maximum principle

We prepare a maximum principle for equations with a growing coefficient in
the transport term. Our results are by no means optimal but it is enough for our
purpose.

Lemma 4.1. Assume that

u0 ∈ C(Rn) ∩ L∞(Rn),
pi ∈ C(Rn × [0, T ]) ∩ L∞1 (Rn × (0, T )), 1 ≤ i ≤ n,
q ∈ C(Rn × [0, T ]).

Assume that u ∈ L∞(Rn × (0, T )) ∩ C([0, T )×Rn) is a classical solution of ∂tu−∆u+
n∑

i=1

pi∂iu+ q = 0 in Rn × (0, T ),

u|t=0 = u0.

Then u satisfies

‖u(t)‖∞ ≤ ‖u0‖∞ +
∫ t

0

‖q(s)‖∞ds.

Proof. We set

v(t) = u(t)− ‖u0‖∞ −
∫ t

0

‖q(s)‖∞ds.

Then v satisfy v(x, 0) ≤ 0 and

∂tu−∆u+
n∑

i=1

pi∂iu+ q + ‖q(t)‖∞ = 0,

in the distribution sense. We set

w(t) = v(t)e−t.

Then w satisfies w(x, 0) ≤ 0 and

∂tw −∆w +
n∑

i=1

pi∂iw + w + e−t(q + ‖q(t)‖∞) = 0.

We set
wε = w − ε log〈x〉.

Then wε satisfies wε(x, 0) ≤ 0 and

∂tw
ε −∆wε +

n∑
i=1

pi∂xi
wε + wε

+ ε

(
log〈x〉 −

n∑
i=1

∂2
xi

log〈x〉+
n∑

i=1

pi∂xi
log〈x〉

)
+ e−t (q + ‖q(t)‖∞) = 0.
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Suppose that

sup
Rn×[0,T ]

w = α > 0.

Then for sufficiently small ε0 > 0, wε satisfies

sup
Rn×[0,T ]

wε >
α

2
,

for all 0 < ε < ε0. Since wε is negative at space infinity, wε has a maximum point
(xε, tε), i.e.

sup
Rn×[0,T ]

wε = wε(xε, tε) >
α

2
.

We are able to take ε small so that∥∥∥∥∥−
n∑

i=1

∂2
xi

log〈x〉+
n∑

i=1

pi∂xi log〈x〉

∥∥∥∥∥
L∞(Rn×[0,T ])

<
α

4ε
,

since the left hand side is finite by the assumption of p = (p1, . . . , pn). Since (xε, tε)
is a maximum of wε, we observe that

∂tw
ε −∆wε +

n∑
i=1

pi∂xi
wε + wε

+ ε

(
log〈x〉 −

n∑
i=1

∂2
xi

log〈x〉+
n∑

i=1

pi∂xi
log〈x〉

)
+ e−t (q + ‖q(t)‖∞) > 0 in Bρ(xε, tε)

for sufficiently small ρ > 0, where Bρ(xε, tε) is a closed ball of radius ρ centered at
(xε, tε) ∈ Rn × (0, T ). This contradicts the equation for wε so we conclude that
wε ≤ 0. Sending ε to zero, we have v(x, t) ≤ 0, i.e.

u(x, t) ≤ ‖u0‖∞ +
∫ t

0

‖q(s)‖∞ds.

A symmetric argument yields

u(x, t) ≥ −‖u0‖∞ −
∫ t

0

‖q(s)‖∞ds

and the proof is now complete. 2
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5. Linear problem in a weighted space

We prove that solvability of a linear equation

(L)

 ∂tu−∆u+
n∑

i=1

pi∂iu+ qu = 0,

u|t=0 = u0,

with growing coefficients at the space infinity.
Definition. By a mild solution of (L) we mean that u ∈ C(Rn × [0, T ))

satisfies

u(t) = et∆u0 −
∫ t

0

∇e(t−s)∆ • p(s)u(s)ds+
∫ t

0

e(t−s)∆(divp(s))u(s)ds

−
∫ t

0

e(t−s)∆q(s)u(s)ds,

where p = (p1, · · · , pn).
Lemma 5.1 (Existence and uniqueness for bounded initial data). Assume

that
pi ∈ L∞((0, T ) : XB) ∩ C(Rn × [0, T ]),

∂ipi, q ∈ BC(Rn × [0, T ]),
u0 ∈ BC(Rn),

where BC is a set of bounded continuous functions. Let α ∈ (0, 1) and m ≥ 0 and
assume that

pi, ∂ipi, q ∈ Cα((0, T ) : L∞m ).

Then (L) has a unique classical solution u ∈ BC(Rn × [0, T )).
Proof. Step. 1 (Construction of a mild solution). We construct a mild

solution u ∈ BC(Rn × [0, T )) for integral equation.
(a) Approximation. Let ψ ∈ C∞0 (Rn) be a cut off function of the form

satisfying

ψ(x) =
{

1 (|x| ≤ 1),
0 (|x| ≥ 2),

and |ψ(x)| ≤ 1 for all x ∈ Rn. For k ∈ N we set ψk(x) = ψ(x/k). We set
pk = (p1,k, · · · , pn,k) := ψkp. Then {pk} ⊂ C(Rn × [0, T ]) is a locally uniformly
convergent sequence. Moreover

sup
i,k,0≤t≤T

‖pi,k(t)‖XB
<∞.

Let uk ∈ BC(Rn × [0, T )) be a classical solution of ∂tuk −∆uk +
n∑

i=1

pi,k∂iuk + quk = 0,

uk|t=0 = u0.
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The unique existence of a classical solution is well-known [8]. By Remark 3.2.(2),
uk satisfies

‖uk(t)‖∞ ≤ ‖u0‖∞eT‖q‖∞ , t ∈ (0, T ).

Hence
∃{ul} ⊂ {uk}, ∃u ∈ L∞(Rn × (0, T )), s.t.
ul −→ u in L∞(Rn × (0, T )) ∗ -weak sense,

and
gmul −→ gmu in L∞(Rn × (0, T )) ∗ -weak sense ∀m ≥ 0,

where gm is defined by gm(x) = 〈x〉−m.
(b) Convergence. By definition of {pi,k}, it is easy to prove that

sup
k,0≤t≤T

‖pk‖XB
<∞,

pi,k −→ pi,
∂ipi,k −→ ∂ipi;

the convergence is locally uniform. We shall prove∫ t

0

e(t−s)∆(divpl(s))ul(s)ds→
∫ t

0

e(t−s)∆(divp(s))u(s)ds,∫ t

0

e(t−s)∆q(s)ul(s)ds→
∫ t

0

e(t−s)∆q(s)u(s)ds,

Fk(x, t) := g1

∫ t

0

∇e(t−s)∆ • pl(s)ul(s)ds→

g1

∫ t

0

∇e(t−s)∆ • p(s)u(s)ds =: F (x, t),

as l → ∞, ∗-weakly in L∞(Rn × (0, T )). The first two convergences are easy to
prove, so we only give a proof of the last convergence. We observe that∫ T

0

∫
Rn

ϕ(x, t)Fl(x, t)dxdt

=
∫ T

0

∫
Rn

ϕ(x, t)(g1(x)
∫ t

0

∫
Rn

(∇xG(x− y, t− s))

•pl(y, s)ul(y, s)dyds)dxdt

=
∫ T

0

∫ T

s

∫
Rn

∫
Rn

ϕ(x, t)g1(x)(∇xG(x− y, t− s))

•pl(y, s)ul(y, s)dxdtdyds

= −
∫ T

0

∫
Rn

pl(y, s)

•

(∫ T

s

∫
Rn

(∇yG(x− y, t− s))ϕ(x, t)g1(x)dxdt

)
ul(y, s)dyds,
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for all ϕ ∈ C∞0 (Rn × (0, T )). Since pl converge to p locally uniform, we see that

pl(y, s) •

(∫ T

s

∫
Rn

(∇yG(x− y, t− s))ϕ(x, t)g1(x)dxdt

)

→ p(y, s) •

(∫ T

s

∫
Rn

(∇yG(x− y, t− s))ϕ(x, t)g1(x)dxdt

)

strongly in L1(Rn × (0, T ))). We thus conclude that∫ T

0

∫
Rn

ϕ(x, t)Fl(x, t)dxdt→
∫ T

0

∫
Rn

ϕ(x, t)F (x, t)dxdt,

as l → ∞. This uniform bound for {ul} in (a) implies a bound for {Fl}. Since
C∞0 (Rn × (0, T )) is dense in L1(Rn × (0, T ))), we now conclude that Fl → F
(l→∞) ∗-weakly in L∞(Rn × (0, T )).

Since ul solves the approximate equation, by our convergence results we observe
that the limit of u ∈ L∞(Rn × (0, T )) satisfies

u(t) = et∆u0 −
∫ t

0

∇e(t−s)∆ • p(s)u(s)ds+
∫ t

0

e(t−s)∆(divp(s))u(s)ds

−
∫ t

0

e(t−s)∆q(s)u(s)ds.

Step. 2 (Regularity and continuity). We shall prove the Hölder regularity
and continuity for t > 0 and continuity at t = 0.

By using Corollary 2.6 and the integral equation we see that u satisfies u ∈
Cα((0, T );L∞1 ) with α < 1/2. Since the initial data u0 ∈ BC(Rn), it is easy to see
that u0 ∈ BUC1(Rn), here

BUCm =
{
f ∈ C(Rn)

∣∣∣∣ f(x)
〈x〉m

∈ BUC
}

;

here BUC is the space of all bounded uniformly continuous functions. Since u
solves the integral equation, and since et∆u0 ∈ C([0, T );BUC1), we conclude that
u ∈ C([0, T );BUC1). Thus u ∈ BC(Rn × [0, T )).

Here we have invoked the Hölder regularity assumptions of pi, ∂ipi, q. For
further regularity see for instance [5]. If u ∈ BC(Rn× [0, T )) is a classical solution
of (L), then by the maximum principle (Lemma 4.1) we conclude the uniqueness
of a solution. 2

Remark 5.2. It seems to be difficult to prove the uniqueness directly by
estimating integral equation.
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Corollary 5.3 (Existence and uniqueness for growing initial data). Assume
that p and q fulfill the assumptions of Lemma 5.1. Assume that

u0 ∈ BCm(Rn),

where BCm(Rn) be of the form

BCm(Rn) =
{
f ∈ C(Rn)

∣∣∣∣ f(x)
〈x〉m

∈ BC(Rn)
}
.

Then (L) has a unique classical solution u ∈ L∞m (Rn × (0, T )) ∩ C(Rn × [0, T )).
Proof. We set

p̃i = pi − 2mg−2xi,

q̃ = q +m
n∑

i=1

pig−2xi −mg−4((m− 2)|x|2 + ng2),

ũ0 = gmu0.

We apply Lemma 5.1 and observe that there is a unique classical solution ũ of ∂tũ−∆ũ+
n∑

i=1

p̃i∂iũ+ q̃ũ = 0,

u|t=0 = ũ0.

We set u = g−mũ, then u is a classical solution of (L). The uniqueness follows from
that of ũ.

6. Proof of Theorem

For p ∈ L∞((0, T );XB) let u ∈ L∞((0, T );XB) be the solution of{
∂tu−∆u+∇u •G′(p) = 0,
u|t=0 = u0 ∈ XB .

The unique existence of u is guaranteed in Corollary 5.2. We denote the mapping
p 7→ u in L∞((0, T );XB) by S. We define a sequence of functions {uk}∞k=1 in
L∞((0, T );XB) by

u1 = et∆u0 , uk+1 = S(uk) for k ≥ 1.

Then, by definition, {uk} satisfies

uk+1(t) = et∆u0 −
∫ t

0

e(t−s)∆(∇uk+1(s) •G′(uk(s)))ds.
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By the estimate for the heat semigroup in weighted space (Remark 2.7) we observe
that

‖uk+1(t)‖∞,1

≤ CT ‖u0‖∞,1 + CTC1

∫ t

0

‖∇uk+1(s)‖∞〈‖uk(s)‖∞,1〉ds

≤ CT

(
‖u0‖∞,1 + C1

∫ t

0

‖∇uk+1(s)‖∞ds
)

+CTC1

∫ t

0

‖∇uk+1(s)‖∞‖uk(s)‖∞,1ds

(6)

Since {∂juk} satisfies

∂t(∂juk+1)−∆(∂juk+1) + ∂i(∂juk+1) •G′(uk) + ∂juk∇uk+1 •G′′(uk) = 0,

the maximum principle (Lemma 4.1) for ∂juk implies that

‖∂juk+1(t)‖∞ ≤ ‖∂ju0‖∞ +
∫ t

0

‖∂juk+1(s)‖∞‖∇uk+1 •G′′(uk)‖∞ds.

Multiplying both sides with ξj ≥ 0 and taking the summation over j, we obtain∑n
j=1 ‖∂juk+1(t)‖∞ξj ≤

∑n
j=1 ‖∂ju0‖∞ξj

+
∫ t

0

n∑
j=1

‖∂juk+1(s)‖∞ξj‖∇uk+1 •G′′(uk)‖∞ds. (7)

We take the supremum of ξ = (ξ1, . . . , ξn), |ξ| = 1, where |ξ| = (
∑n

j=1 |ξj |2)1/2 to
get

‖∇uk+1(t)‖∞ ≤ ‖∇u0‖∞ + C2

∫ t

0

‖∇uk+1(s)‖∞‖∇uk(s)‖∞ds.

by the Schwarz inequality. We now apply Lemma 3.3 with F (t, r) = C2r, h(t) =
‖∇u0‖∞, f(t) = ‖∇uk+1(t)‖∞, g(t) = ‖uk(t)‖∞. By this choice of F we observe
that

k(t) =
‖∇u0‖∞

1− C2‖∇u0‖∞t
.

Applying Lemma 3.3 with (7) inductivity, we conclude that ‖∇uk(t)‖∞ ≤ k(t),
t ∈ (0, T ) for all k ∈ N, provided that T < 1/C2‖∇u0‖∞. By (6) we see that

‖uk+1‖∞,1 ≤ h(t) + C1CT

∫ t

0

k(s)‖uk(s)‖∞,1ds

with

h(t) = CT ‖u0‖∞,1 + CTC1

∫ t

0

k(s)ds

We again apply Lemma 3.3 with F (t, r) = k(t)r, f(t) = ‖uk+1‖∞,1, g(t) = ‖uk‖∞,1

and conclude that

‖uk‖∞,1 ≤ h(t) +
∫ t

0

k(s)h(s)e
∫ s
0 k(τ)dτds
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Thus we conclude that ‖uk(t)‖∞,1 ≤ k(t), t ∈ (0, T ) for all k ∈ N provided
that T < 1/C2‖∇u0‖∞. We observe that {uk} is bounded in L∞((0, T );XB) if
T < 1/C2‖∇u0‖∞.

We shall estimate the deference:

wk = uk+1 − uk.

By definition wk satisfies

∂twk −∆wk +∇wk •G′(uk) +∇uk • (G′(uk)−G′(uk−1)) = 0.

We change the dependent variable by

w̃k =
wk

〈x〉
and observe that

∂tw̃k −∆w̃k +
(
x

〈x〉
+ G′(uk)

)
• ∇w̃k

+
(
n〈x〉2 − |x|2

〈x〉4
+

x

〈x〉
• G′(uk)

〈x〉

)
w̃k

+
(

1
〈x〉

G′(〈x〉ũk)− 1
〈x〉

G′(〈x〉ũk−1)
)
• ∇uk = 0.

By the maximum principle (Lemma 4.1) we obtain

‖w̃k(t)‖∞ ≤M1

∫ t

0

‖w̃k−1(s)‖∞ds+M2

∫ t

0

‖w̃k(s)‖∞ds,

where M1 and M2 are defined by

M1 = sup
k,0≤τ≤T

‖∇uk(τ)‖∞,

M2 = n+ 1 + nC1

√√√√1 +

(
sup

k,0≤τ≤T
‖uk(τ)‖∞,1

)2

.

Thus we have

‖wk(t)‖∞,1 ≤M1

∫ t

0

‖wk−1(s)‖∞,1ds+M2

∫ t

0

‖wk(s)‖∞,1ds.

By the Gronwall inequality (Remark 3.2(2))

‖wk(t)‖∞,1 ≤M1

∫ t

0

‖wk−1(s)‖∞,1ds

+M1M2e
M2T

∫ t

0

∫ s

0

‖wk−1(τ)‖∞,1dτds

≤M1

∫ t

0

|‖wk−1‖|∞,1,sds

+M1M2e
M2TT

∫ t

0

|‖wk−1‖|∞,1,sds

=
(
M1 +M1M2e

M2TT
) ∫ t

0

|‖wk−1‖|∞,1,sds,
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where |‖wk−1‖|∞,1,t is defined by

|‖wk‖|∞,1,t = sup
0≤τ≤t

‖wk(τ)‖∞,1.

Therefore,

|‖wk‖|∞,1,t ≤
(
M1 +M1M2e

M2TT
) ∫ t

0

|‖wk−1‖|∞,1,sds.

We thus conclude that {uk} is Cauchy sequence in L∞((0, T );L∞1 ). Let u be its
limit.

Since {∇uk} is bounded in L∞(Rn × (0, T )), there exists v ∈ L∞(Rn × (0, T ))
and a subsequence {∇ul} ⊂ {∇uk}, such that v is the limit of {∇ul} in L∞(Rn ×
(0, T )) in ∗-weak sense. Moreover v = ∇u in distribution sense.

Since ul converges to u locally uniformly and the ∇ul converges to ∇u in ∗-weak
sense in L∞(Rn × (0, T )). We see that

g1

∫ t

0

e(t−s)∆ (∇ul(s) •G′(ul−1(s))) ds

−→ g1

∫ t

0

e(t−s)∆ (∇u(s) •G′(u(s))) ds

as l → ∞, ∗-weakly in L∞(Rn × (0, T )), where g1(x) = 1/〈x〉. The proof of this
convergence is similar to that of Lemma 5.1.

We thus conclude that

u(t) = et∆u0 +
∫ t

0

e(t−s)∆ (∇u(s) •G′(u(s))) ds.

In other words u is a mild solution of (E). By Corollary 5.3 we observe that u is a
classical solution and u ∈ C([0, T );L∞1 ). By the maximum principle (Lemma 4.1)
it is easy to prove the uniqueness of a classical solution of (E). ( By the way by
construction we have ||∇u(t)||∞ ≤ k(t). However, this can be proved directly by
estimating the integral equation and applying Remark 3.2(1).) 2
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